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Abstract

This paper develops and implements a framework for the computation of cou-
pled aero-structural sensitivities which are required for the design of aircraft where
aeroelastic interactions are significant. All aero-structural sensitivities are computed
using high-fidelity models of both the aerodynamics and the structure of the wing
with a coupled-adjoint approach that uses single discipline sensitivity information
to calculate the sensitivities of the coupled system. The sensitivities of drag with
respect to a set of shape design variables are computed using the aero-structural
adjoint method and compared with sensitivities given by the complex-step deriva-
tive approximation and finite-differences. The aero-structural adjoint is shown to
be both accurate and efficient, and to have a significant cost advantage when the
gradient of a small number of functions with respect to a large number of design
variables is needed. To demonstrate the usefulness of computing aero-structural
sensitivities with the proposed method, results of two drag minimization problems
with 190 shape design variables are presented. These results emphasize the impor-
tance of aero-structural coupling even in a conventional swept-wing design.

Introduction

A considerable amount of research has been conducted on MultiDisciplinary Optimiza-
tion (MDO) and its application to aircraft design. The survey paper by Sobieski [16]
provides a comprehensive discussion of much of the work in this area. The efforts de-
scribed therein range from the development of techniques for inter-disciplinary coupling
to applications in real-world design problems. In most cases, sound coupling and opti-
mization methods were shown to be extremely important since some techniques, such
as sequential discipline optimization, were unable to converge to the true optimum of
a coupled system. Wakayama [17], for example, showed that in order to obtain real-
istic wing planform shapes with aircraft design optimization, it is necessary to include
multiple disciplines in conjunction with a complete set of real-world constraints.

Aero-structural analysis has traditionally been carried out in a cut-and-try basis.
Aircraft designers have a pre-conceived idea of the shape of an “optimal” load distribution
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and then tailor the structure’s jig shape so that the deflected wing shape under a 1-g load
gives the desired distribution. While this approach is typically sufficient for traditional
swept-back wing designs, the complexity of aero-structural interactions can be such that,
in more advanced designs where little experience has been accumulated or where multiple
design points are part of the mission, it can result in sub-optimal designs. This is the
case in the design of both small and large supersonic transports, where simple beam
theory models of the wing cannot be used to accurately describe the behavior of the
wing’s structure. In some cases, these aircraft must also cruise for significant portions of
their flight at different Mach numbers. In addition, a variety of studies show that this
type of aircraft configuration exhibits a range of undesirable aeroelastic phenomena that
can only be suppressed when aero-structural interactions are taken into account at the
preliminary design stage [2].

Unfortunately, the modeling of the various disciplines in most of the work that has ap-
peared so far has remained at a relatively low level. While useful at the conceptual design
stage, lower-order models cannot accurately represent a variety of nonlinear phenomena
such as wave drag, which can play an important role in the search for the optimum de-
sign. An exception to this low-fidelity modeling is the recent work by Giunta [4] and by
Maute et al. [10] where aero-structural sensitivities are calculated using higher-fidelity
models.

The objective of this work is to develop techniques for computing high-fidelity coupled
sensitivities of aero-structural problems inexpensively so that the resulting information
may be used by a gradient-based optimizer to perform realistic design studies. Typi-
cal cost functions include different aerodynamic surface pressure integrals (e.g. drag),
structural weight, and principal stresses. The aero-structural design problem is usually
parameterized using shape design variables that modify the Outer-Mold Line (OML) and
the sizes of the structural elements. The MDO framework is built upon prior work by
the authors on aero-structural high-fidelity sensitivity analysis [13, 9].

The following sections begin with an introduction to analytic sensitivity analysis
where the adjoint method is derived. We then generalize this theory for coupled systems
and derive the aero-structural sensitivity equations we want to solve. We then solve these
equations to obtain the vector of sensitivities of the wing drag coefficient with respect
to wing-shape variables and show that, when using the coupled-adjoint method, these
sensitivities can be obtained accurately and efficiently. Finally, we present results of the
application of this sensitivity computation method to the aero-structural optimization of
a transonic wing.

Analytic Sensitivity Analysis

When solving an optimization problem the goal is usually to minimize an objective func-
tion, I, by carefully choosing the values of a set of design variables. In general, the
objective function depends not only on the design variables, but also on the physical
state of the problem that is being modeled, thus we can write

I = I(xj , yk), (1)

where xj represents the design variables and yk the state variables.
For a given vector xj , the solution of the governing equations of the system yields

a vector yk, thus establishing the dependence of the state of the system on the design
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variables. We will denote the governing equations as

Rk′ (xj , yk (xj)) = 0. (2)

The first instance of xj in the above equation signals the fact that the residual of the
governing equations may depend explicitly on xj . In the case of a structural solver, for
example, changing the size of an element has a direct effect on the stiffness matrix. By
solving the governing equations we determine the state, yk, which depends implicitly on
the design variables through the solution of the system.

Since the number of equations must equal the number of state variables for a solvable
system, the ranges of the indices k and k′ are the same, i.e., k, k′ = 1, . . . , nR. For
a structural solver, for example, nR is the number of free degrees of freedom; while
for a Computational Fluid Dynamics (CFD) solver, nR is the number of mesh points
multiplied by the number of state variables at each point (four in the two-dimensional
case and five in three-dimensions.) For a coupled system, R′k represents all the governing
equations of the different disciplines.

R =0

x

I
y

Figure 1: Schematic representation of the governing equations (R = 0), design variables (x),
state variables (y), and objective function (I).

A graphical representation of the system of governing equations is shown in Figure 1,
with the design variables xj as the inputs and I as the output. The two arrows leading to
I illustrate the fact that the objective function may depend on the design variables not
only explicitly, but also through the state variables that satisfy the governing equations.

When solving the optimization problem using a gradient-based optimizer, the total
variation of the objective function with respect to the design variables, dI

dxj
, must be

calculated. As a first step towards obtaining this total variation, we use the chain rule
to write the total variation of I as

δI =
∂I

∂xj
δxj +

∂I

∂yk
δyk, for k = 1, . . . , nR, j = 1, . . . , nx, (3)

where we use index notation to denote the vector products. If we were to use this
equation directly, the vector of δyk’s would have to be calculated for each δxj by solving
the governing equations nx times. If there are many design variables and the solution of
the governing equations is costly, using equation (3) directly can be impractical.

We now observe that the variations δxj and δyk in the total variation of the objective
function (3) are not independent of each other if we restrict ourselves to the solution of
the governing equations (2). A relationship between these two sets of variations can be
obtained by realizing that the variation of the residuals (2) must be zero, i.e.

δRk′ =
∂Rk′

∂xj
δxj +

∂Rk′

∂yk
δyk = 0, (4)
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for all k = 1, . . . , nR and j = 1, . . . , nx.
Since this residual variation (4) is zero we can add it to the objective function varia-

tion (3) without modifying the latter, i.e.

δI =
∂I

∂xj
δxj +

∂I

∂yk
δyk + ψk′

(
∂Rk′

∂xj
δxj +

∂Rk′

∂yk
δyk

)
, (5)

where ψk′ are arbitrary scalars called adjoint variables. This approach is identical to the
one used in non-linear constrained optimization, where equality constraints are added to
the objective function, and the arbitrary scalars are known as Lagrange multipliers.

We can now group the terms in equation (5) that contribute to the same variation
and write

δI =
(

∂I

∂xj
+ ψk′

∂Rk′

∂xj

)
δxj +

(
∂I

∂yk
+ ψk′

∂Rk′

∂yk

)
δyk. (6)

If we set the term multiplying δyk to zero, we are left with the total variation of I
as a function of the design variables and the adjoint variables, removing the dependence
of the variation on the state variables. Since the adjoint variables are arbitrary, we can
accomplish this by solving the adjoint equations

∂Rk′

∂yk
ψk′ = − ∂I

∂yk
. (7)

These equations depend only on the partial derivatives of both the objective function and
the residuals of the governing equations with respect to the state variables. Since these
partial derivatives can be calculated directly without solving the governing equations,
the adjoint equations (7) only need to be solved for each I and their solution is valid for
all the design variables.

When adjoint variables are found in this manner, we can use them to calculate the
total sensitivity of I with the first term of equation (6), i.e.

dI

dxj
=

∂I

∂xj
+ ψk′

∂Rk′

∂xj
. (8)

The cost involved in calculating sensitivities using the adjoint method is practically
independent of the number of design variables. After having solved the governing equa-
tions, the adjoint equations are solved only once for each I, independently of the number
of design variables. The terms in the adjoint equations are inexpensive to calculate, and
the cost of solving the adjoint equations is similar to that involved in the solution of the
governing equations.

The adjoint method has been widely used for single discipline sensitivity analysis and
examples of its application include structural sensitivity analysis [1] and aerodynamic
shape optimization [6].

Aero-Structural Sensitivity Analysis

The analysis presented in the previous section for single discipline systems can be gen-
eralized for multiple, coupled systems. The same total sensitivity equations (7, 8) apply,
provided that the governing equations and state variables corresponding to all the disci-
plines are included in Rk′ and yk respectively.
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In the case of an aero-structural system we have aerodynamic (A) and structural (S)
analyses, and two sets of state variables: the flow state, w, and the structural displace-
ments, u.

We now use a notation that is specific to the aero-structural system, rather than
the general notation we have used in the previous section. We no longer use index
notation and we split the vectors of residuals, states and adjoints into two smaller vectors
corresponding to the aerodynamic and structural systems, i.e.

Rk′ =
[

RA

RS

]
, yk =

[
w
u

]
and ψk′ =

[
ψA

ψS

]
. (9)

Figure 2 shows a diagram representing the coupling in this system.

R =0

x

C

w
A R =0

u
S

D

Figure 2: Schematic representation of the aero-structural governing equations.

Since for the problem at hand we are interested in the sensitivities of the drag coef-
ficient, CD takes the place of I. We continue to denote the wing-shape variables by the
same vector, x.

Using this new notation, the adjoint equation (7) for an aero-structural system can
be written as

[
∂RA/∂w ∂RA/∂u
∂RS/∂w ∂RS/∂u

]T [
ψA

ψS

]
=

[
∂CD/∂w
∂CD/∂u

]
. (10)

In addition to the diagonal terms of the matrix that appear when we solve the single
discipline adjoint equations, we also have cross terms expressing the sensitivity of one
discipline to the other’s state variables. The residual sensitivity matrix in this equation is
identical to that of the Global Sensitivity Equations (GSE) introduced by Sobieski [15].
Considerable detail is hidden in the terms of this equation and therefore we will describe
each of the terms in more detail.

• ∂RA/∂w: This term represents the variation of the residuals of the CFD equations
due to changes in the the flow variables. When a flow variable at a given cell center
is perturbed, the sum of the fluxes on that cell is altered. Only that cell and the
neighboring ones are affected. Therefore, even though ∂RA/∂w is a large square
matrix, it is also extremely sparse and its non-zero terms can be calculated with
finite-differences.

• ∂RA/∂u: This represents the effect that the structural displacements have on the
residuals of the CFD solution through the perturbation of the CFD mesh. When
the wing deflects, the mesh must be warped, resulting in a change in the geometry
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of a subset of grid cells. Even though the flow variables are kept constant, the
change in the geometry has an influence on the sum of the fluxes, whose variation
can be easily obtained by re-calculating the residuals for the warped cells.

• ∂RS/∂w: The linear structural equations can be written as Ku− f = 0, where K
is the stiffness matrix and f is the vector of applied forces. The only term that the
flow variables affect directly is the applied force, and therefore this term is equal
to −∂f/∂w, which can be found by examining the procedure that integrates the
pressures to obtain the applied forces.

• ∂RS/∂u: Since the forces do not depend directly on the displacements, this term
is simply the stiffness matrix, K.

• ∂CD/∂w: The direct sensitivity of the drag coefficient with respect to the flow
variables can be obtained analytically by examining the numerical integration of
the surface pressures.

• ∂CD/∂u: This term represents the change in the drag coefficient due to the wing’s
displacements while keeping the pressure distribution constant. The structural
displacements affect the drag directly, since they change the wing surface geometry
over which the pressure distribution is integrated.

The computation of all of these terms is inexpensive when compared to the cost of an
aero-structural solution because it does not require an iterative procedure.

Since the factorization of the full matrix in the system of equations (10) would be
extremely costly, our approach uses an iterative solver, much like the one used for the
aero-structural solution, where the adjoint vectors are lagged and the two different sets of
equations are solved separately. For the calculation of the adjoint vector of one discipline,
we use the adjoint vector of the other discipline from the previous iteration, i.e., we solve

[
∂RA

∂w

]T

ψA =
∂CD

∂w
−

[
∂RS

∂w

]T

ψ̃S , (11)

[
∂RS

∂u

]T

ψS =
∂CD

∂u
−

[
∂RA

∂u

]T

ψ̃A. (12)

The final result given by this system, is the same as that of the original coupled-adjoint
equations (10). We will call this the Lagged-Coupled Adjoint (LCA) method for com-
puting sensitivities of coupled systems. Note that these equations look like the single
discipline adjoint equations for the aerodynamic and the structural solvers, with the ad-
dition of forcing terms in the right-hand-side that contain the cross terms of the residual
sensitivity matrix.

As noted previously, ∂RS/∂u = K for a linear structural solver. Since the stiffness
matrix is symmetric, KT = K, and the structural adjoint equations (12) have the same
“stiffness matrix” as the structural governing equations. Therefore, the structural solver
can be used to solve for the structural adjoint vector, ψS , by using the pseudo-load vector
given by the right–hand side of equation (12).

Once both adjoint vectors have converged, we can compute the final sensitivities of
the objective function by using

dCD

dx
=

∂CD

∂x
− ψT

A

∂RA

∂x
− ψT

S

∂RS

∂x
, (13)
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which is the coupled version of the total sensitivity equation (8). We will now describe
the partial derivatives in the above equation.

• ∂CD/∂x: This is the change in the drag coefficient due to wing-shape perturbations,
while keeping the pressure distribution constant. This sensitivity is analogous to
the partial derivative ∂CD

∂u that we described above and can be easily calculated
using finite-differences.

• ∂RA/∂x: The direct effect of shape perturbations on the CFD residuals is similar
to that of the displacements on the same residuals, ∂RA/∂u, that we mentioned
previously.

• ∂RS/∂x: The only term of the structural equations that the shape perturbations
affect directly is the stiffness matrix, and thus this partial derivative is equal to
∂K/∂x · u.

As in the case of the partial derivatives of equations 10, all the terms can be computed
without incurring a large computational cost.

Results

The focus of this section is on the validation of the coupled aero-structural sensitivities
obtained using an implementation of the lagged coupled-adjoint method. The computed
sensitivities are primarily intended to be used in conjunction with a gradient-based op-
timizer to guide the evolution of the wing design. To illustrate this purpose, we also
include two design examples that are not meant to represent a true wing design problem,
where more suitable choices of objective function, design variables, and constraints would
be necessary.

Aero-Structural Analysis

The coupled-adjoint procedure was implemented as a module that was added to the aero-
structural design framework previously developed by the authors [13]. The framework
consists of an aerodynamic analysis and design module (which includes a geometry engine
and a mesh perturbation algorithm), a linear finite-element structural solver, an aero-
structural coupling procedure, and various pre-processing tools that are used to setup
aero-structural design problems.

The aerodynamic analysis and design module, SYN107-MB [12], is a multiblock par-
allel flow solver for both the Euler and the Reynolds Averaged Navier-Stokes equations
that has been shown to be accurate and efficient for the computation of the flow around
full aircraft configurations [14]. An aerodynamic adjoint solver is also included in this
package in order to perform aerodynamic shape optimization in the absence of aero-
structural interaction.

The structural analysis package is FESMEH, a finite element solver developed by
Holden [5]. The package is a linear finite-element solver that incorporates two element
types and computes the structural displacements and stresses of wing structures. Al-
though this solver is not as general as some commercially-available packages, it is still
representative of the challenge involved in using large models with tens of thousands of
degrees of freedom. High-fidelity coupling between the aerodynamic and the structural
analysis programs is achieved using a linearly consistent and conservative scheme [13, 3].
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Figure 3: Wing pressure distributions for rigid and aero-structural configurations.

The subsequent results have been obtained for the isolated wing of a small transonic
business jet flying at a free-stream Mach number of 0.82. The wing planform and pressure
distributions are shown in Figure 3 both with and without the aeroelastic deflections, for
the same lift coefficient of 0.352.

The structural model of the wing is constructed using a wing box with six spars evenly
distributed from 5% to 50% of the chord at the root and from 5% to 80% of the chord
at the tip section. Ribs are distributed along the span at every tenth of the semispan.
A total of 640 finite elements were used in the construction of this model. Appropriate
thicknesses of the spar caps, shear webs, and skins were chosen to model the wing’s real
structure. The production airplane has a very stiff wing that results in rather small
deflections. In order to investigate the effect of larger wing tip deflections, the Young’s
modulus of the material was reduced so that a wing tip deflection of approximately 4%
of the semispan was achieved for the cruise condition. Figure 4 shows a view of the
deflected and rigid geometries of the wing box. The nodes of the structural models are
shown, but the finite elements are not drawn for clarity.

The displacement and rotation of the wing tip is shown in Figure 5 and it is clear that
the incidence of the tip section is decreased. This is expected, since for swept-back wings,
the aeroelastic axis is located ahead of the quarter-chord line. The lower incidence of the
outboard sections of the deflected wing explains the increase in the angle of attack (from
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Figure 4: Model of the wing structure showing
the jig shape and the deflected shape.
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Figure 5: Deflection of the rib located at the
wing tip.

−0.039 to 0.526 degrees) that is necessary to maintain the same wing lift coefficient.

Aero-Structural Sensitivities

The sensitivity results of the coupled-adjoint method are validated by comparison with
finite-differences and complex-step derivative approximations. The complex-step approx-
imation is a relatively new method that computes sensitivities (e.g. dCD/dxj) using the
formula

dCD

dxj
≈ Im [CD (xj + ih)]

h
. (14)

Details of this simple yet powerful approximation can be found in work published by the
authors [8, 9, 7]. As in the case of finite-differences, the cost of a full gradient calcula-
tion scales linearly with the total number of design variables. Unlike finite-differences,
however, the accuracy of the complex-step method is extremely insensitive to the step
size, h, making it much more robust.

The design variables are wing-shape perturbations in the form of Hicks-Henne bump
functions [12], two sets of which we used to obtain the results presented herein. The
first set consists of shape perturbations that we evenly distributed spanwise along the
quarter-chord of the wing, both on the top and on the bottom surfaces.

Figure 6 shows the results of the sensitivity calculations of the coefficient of drag,
CD, to the amplitude of this set of shape functions. The upper plot represents the effect
of 9 of these design variables placed along the upper surface of the wing, while the lower
plot shows the same results for the 9 bumps placed along the lower surface. In each of
the plots we present the sensitivities with and without the presence of aero-structural
coupling.

When only the aerodynamics is taken into account, the shape of the upper surface
of the wing has a large effect on the drag coefficient, specially for the sections near the
root. The influence of the lower surface shape, on the other hand, is much smaller, being
one order of magnitude smaller. The finite-difference and complex-step results are almost
identical, the L2 norm of the difference between the two being 5×10−5. The aerodynamic
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Figure 6: Sensitivities of the drag coefficient
with respect to shape perturbations distributed
spanwise.
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Figure 7: Sensitivities of the drag coefficient
with respect to shape perturbations distributed
chordwise.

adjoint follows closely, with L2 = 4 × 10−4; the greater difference is attributable to the
fact that we use a discretization of the continuous adjoint equations that is only consistent
with the values given by finite-differences in the limit of very fine meshes. This fact has
been demonstrated in previous work within our research group [11].

When aero-structural deflections are taken into account, there is a significant change
in the sensitivities. The values of the aero-structural sensitivities with respect to the
upper surface shape modifications shown in Figure 6 have magnitudes that are between
50% and 100% smaller than their rigid counterparts. This is an expected result since the
wing exhibits aeroelastic twist relief and therefore, at a fixed angle of attack, the total
CL is lower than for the rigid case.

On both surfaces, the sensitivity values given by the complex-step and finite-difference
methods agree extremely well. The aero-structural adjoint sensitivities agree with the
reference results thus validating the implementation of the method. The magnitude of
the L2 norms of the differences between the finite-difference and adjoint results are of
the same order as those noted for the rigid wing case.

For the second set of sensitivities we chose to distribute the Hicks-Henne bump func-
tions evenly in the chordwise direction of an airfoil section located midspan. The resulting
sensitivities are shown in Figure 7. Again, 9 bumps are evenly distributed along the top
and 9 on the bottom of the airfoil. The agreement between the adjoint results and the
reference sensitivities given by finite differences and the complex step is very similar to
what we described for the first set of sensitivities.

Table 1 summarizes the computational times required for the calculation of the com-
plete gradient of the drag coefficient with respect to the design variables of the problem.
The times are normalized with respect to the computational time required for a sin-
gle aero-structural solution. Using our framework, this computational time is only 25%
higher than the time required for a rigid aerodynamic solution converged to the same
level.

Note that the cost of the sensitivity calculation using either the finite-difference or
complex-step methods is linearly dependent on the number of design variables in the
problem, whereas the cost of the coupled-adjoint procedure is essentially independent of
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Aero-structural Solution 1.0
Finite difference 14.2
Complex step 34.4
Coupled adjoint 7.5

Aerodynamic Solution 0.8
Finite difference 13.3
Complex step 32.1
Adjoint 3.3

Table 1: Computation time comparison.

this number. In more realistic design situations where the number of design variables
chosen to parameterize the surface is much larger than 18, the computational efficiency
of the adjoint sensitivity calculation would become even more obvious.

The cost of a finite-difference gradient evaluation for the 18 design variables is about
14 times the cost of a single aero-structural solution for computations that have con-
verged to six orders of magnitude. Notice that one would expect this method to incur a
computational cost equivalent to 19 aero-structural solutions (the solution of the baseline
configuration plus one flow solution for each design variable perturbation.) The cost is
lower than this because the additional calculations do not start from a uniform flow-field
initial condition, but from the previously converged solution.

The cost of the complex-step procedure is more than twice of that of the finite-
difference procedure since the function evaluations require complex arithmetic. We feel,
however, that the complex-step calculations are worth this cost penalty since there is
no need to find an acceptable step size a priori, as in the case of the finite-difference
approximations.

Finally, the coupled-adjoint method requires the equivalent of 7.5 aero-structural
solutions to compute the whole gradient. As mentioned previously, this computational
cost is practically independent of the total number of design variables in the problem and
would therefore remain at the same order of magnitude, even in the more realistic case
of 200 or more design variables. In contrast, the finite-difference method would require
a computational effort of around 200

18 × 14.2 = 157.8 times the cost of an aero-structural
solution to compute the same gradient.

Wing Optimization

In this section, the sensitivity analysis procedure we presented is used for the drag mini-
mization of the same swept-back transonic wing flying at a Mach number of 0.82, and at
a wing lift coefficient of 0.352. Two separate design calculations are presented: the first
one is carried out under the assumption that the wing structure is infinitely rigid, while
the second one includes the effects of aero-structural coupling. In both calculations there
is a total of 190 shape design variables, 10 of which are wing section twists and the rest
are bump functions distributed throughout the wing’s surface. In addition, four linear
constraints are imposed at 11 evenly-spaced spanwise defining stations: two spar thick-
ness constraints at the 40% and 80% chord locations, a trailing edge angle constraint,
and a leading edge radius constraint.

11



  

  
  

  
  

  

  SYMBOL  
  

  
  

  

  SOURCE  
OPTIMIZED

BASELINE
  

  

  ALPHA  
  1.837

 -0.039
  

  

     CD     
 0.00814

 0.01119
  

  

  
  

  
  

AERODYNAMIC W25 WING OPTIMIZATION
MACH = 0.820  ,  CL = 0.352

Solution  1
 Upper-Surface Isobars 

( Contours at 0.05 Cp )

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

C
p

X / C
  0.0% Span

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

C
p

X / C
 14.8% Span

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

C
p

X / C
 30.8% Span

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

C
p

X / C
 46.6% Span

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

C
p

X / C
 62.8% Span

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

C
p

X / C
 76.7% Span

Figure 8: Wing pressure distributions for baseline and optimized rigid designs.

Rigid Wing-Shape Optimization

The results of the drag minimization problem for the rigid wing case are shown in Fig-
ure 8. These result are representative of our earlier work and are provided for comparison
with the aero-structural optimization results of the following section. Chordwise pres-
sure distributions for six different spanwise stations are shown. The solid lines represent
the outcome of the design optimization, while the dashed lines correspond to the rigid
analysis of the baseline configuration. Through the modifications in the shape of the
airfoil sections on the wing, the coefficient of drag has decreased from 0.01119 to 0.00814
in 12 design iterations. As seen in Figure 8, the strong shock wave that existed along
the span has been eliminated, and the strong recompression in the root section of the
wing has been smoothed. The decrease in drag coefficient is mainly due to the elimina-
tion of the shock wave drag, although the spanload has changed slightly resulting in a
reduction in induced drag. The resulting rigid shape would usually be passed on to the
structural designer so that a jig shape that deforms to this geometry under a 1-g load
can be designed.
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Figure 9: Wing pressure distributions for baseline and optimized aero-structural designs.

Aero-Structural Wing-Shape Optimization

Figure 9 shows the result of minimizing drag after 12 design iterations for the same
configuration, design variables, and constraints mentioned above. The only difference
is that aero-structural effects are included and the sensitivity information used to guide
the progress of the design uses the aero-structural adjoint method. The result of this
optimization is interesting in two ways. Firstly, even with the inclusion of aero-structural
effects, the optimization procedure has managed to completely eliminate the strong shock
wave that existed all along the upper surface of the wing. The importance of this result
lies in the fact that in order to completely eliminate the shock wave drag, the correct
sensitivities of drag coefficient to shape deformations in the presence of structural de-
flections are needed. This serves as independent validation of the sensitivities computed
through the coupled-adjoint procedure. The second point of interest is the character of
the optimized pressure distributions shown in Figure 9. Since the optimizer is only able
to change the shape of the wing surface, it only has an indirect effect on the resulting
twist distribution. This leads to pressure distributions with a high load in the aft portion
of most airfoils sections. The aero-structural analysis of the baseline wing yields a drag
coefficient of 0.01186, a higher value than the original rigid baseline drag coefficient of
0.01119. The drag coefficient decreased to 0.00810, a value which is not significantly
lower than the result of the rigid optimization. The comments made for the rigid case
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Figure 10: Wing pressure distributions for the optimized aero-structural design and the de-
flected optimized rigid design.

regarding the importance of the decrease in shock wave and induced drag also apply to
these optimization results.

Comparison of Results

In Figure 10 we show a comparison of the pressure distributions resulting from the aero-
structural optimization shown in Figure 9 and an aero-structural analysis of the optimum
rigid design of Figure 8. The goal of this comparison is to emphasize that the two op-
timization runs will yield different results, particularly in the outboard section of the
wing where the twist and bending deflections are the largest. The value of performing
aero-structural optimization is especially important in unconventional structural con-
figurations and in situations where additional design variables affecting the weight and
stiffness of the structure are considered.

Conclusions

A new methodology for coupled sensitivity analysis of high-fidelity aero-structural anal-
ysis was presented. The underlying theory in this methodology is a generalization of the
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adjoint method for sensitivity analysis that can be applied to any multidisciplinary sys-
tem. The lagged-coupled adjoint approach was proposed, that makes viable the solution
of the adjoint equations for the case of high-fidelity aero-structural analysis with a large
number of state and coupling variables.

The lagged aero-structural adjoint was implemented, adding sensitivity computation
capability to the existing wing optimization framework. The current implementation
computes the sensitivities of the wing drag coefficient with respect to a series of bump
functions distributed throughout the surface of the wing.

The accuracy and cost of computation of these sensitivities using the lagged aero-
structural adjoint method was compared to finite-differences and the complex-step deriva-
tive approximation. The lagged-coupled adjoint was shown to produce accurate sensi-
tivities with a considerable reduction in computational cost. The reason for this drastic
reduction is the fact that the cost of computing sensitivities using an adjoint method is
not strongly dependent on the number of design variables.

Typically, hundreds of variables are used in this type of wing-shape optimization,
making the coupled-adjoint approach even more attractive. The sensitivities obtained
by this method were used to solve a wing optimization problem with a large number of
design variables and the method was shown to be suitable for use in design.

Future work in this area of research is expected to add further capability to the
multidisciplinary wing optimization framework. The sensitivity of other aerodynamic
quantities will be computed and the sizes of structural elements will be added to the set
of design variables. The computation of sensitivities of structural displacement and stress
with respect to the design variables will also be implemented in order to add realistic
constraints to the wing optimization problem.
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